Jump to content
Ultimaker Community of 3D Printing Experts

geert_2

Ambassador
  • Content Count

    1,775
  • Joined

  • Last visited

  • Days Won

    24

Everything posted by geert_2

  1. At first, I thought: are you really going to slide downhill in a 3D-printed sled? What if it breaks? But then I saw the dimensions: 12cm. :-) The first photo, it laying upside down, looks really convincing.
  2. Thanks for the feedback, it could indeed help people in similar situations, even for other printers.
  3. Do the walls need to be slanted for cutting cookies? For injection moulding plastics, for sure yes, for casting silicones also yes, unless the models are very thin. But for soft cookies or dough? If I had to print cookie cutters or plasticine cutters, I would probably first try straight walls, print with a standard 0.4mm nozzle (less risk of underextrusion and clogs), 0.8mm thick walls (=2 lines), print slow at 25...30mm/s, thin layers 0.06...0.12mm, and print cool at the lower edge of the temp range. Printing cool helps prevent the filament from decomposing in the nozzle due to th
  4. This looks like severe underextrusion. It could have lots of reasons: user gr5 has made a good list and tutorial video on this. See if you can find it here on the forum (I don't know the links), and check each item on the list. I once made underextrusion tests. Your models look a bit like the 80-90% in my tests. This is PLA. (Lack of light, translucent filament, and narrow depth of field of the camera don't help the photo quality, but you get the idea.)
  5. If you could redesign the overhanging rings to be at 45° or 60°, instead of 0° (where 0° is horizontal and 90° is vertical), they could print without supports. I don't know that machine, so I don't know if these rings are functionally required or not? Or if they could do with a shallower angle? That would seem the best option, if functionally possible, since you don't need supports then. If you do need the rings at 0°, and thus do want supports, but you don't want them to go all the way down, you could also design custom free hanging supports, like I did in these models. But test t
  6. I don't know your printer, but it looks like it still needs calibrating steps, and maybe correcting slack and tolerances. You may need to find manuals and tutorials on that for your printer, or ask the manufacturer. After that, for finding the best settings for general printing: just stay with the printer and watch it closely, while printing small test models. Do lots of test models, one by one. Change speed on the fly, and see how that affects the print quality. Change temperature on the fly, and see what happens. Change cooling on the fly, change flow-rate, etc... Print the same
  7. Yes, just print enough skirt priming lines around the object: 5 for a bigger object, 10 for a tiny one. And while it is printing these, turn the bed-adjusting screws until you get the desired thickness and squeezing of your first layer.
  8. For sealing seams, maybe you could also make your own custom gaskets? Print a mould, and pour silicone in it, the kind of silicone that is used for, well, mould-making. Be sure to smooth the layer-lines of the mould, otherwise removal of the silicone will be difficult. Silicones come in various hardnesses, from flesh-like up to tire-like.
  9. I wanted to fly RC-planes, but I can't even drive and park an RC-car: I keep getting left and right mixed-up. So I dare not try a plane where fast reactions are required, and in a roll even up and down get inverted. Maybe a huge RC-containership would go, because it is so slow I would have enough time to think the inversions through. But I am not into ships... Concerning the weight, if you visually compare old lightweight and new heavier prints, isn't there any visible difference? Are there added structures, or is just everything thicker? A 30% increase should be visible somewhere,
  10. Just a question: this "increased weight", is that: (1) Calculated and indicated weight in Cura, prior to printing? Or (2) is it a measured increase on a scale, after printing? If (1), then could it be that Cura also calculates the weight of printing supports? Just a thought that crossed my mind, I don't know how realistic it is... About RC-planes: has anyone of you ever built one with a live camera, and a VR-headset, so you can fly it from a real pilot's viewpoint? Should be much easier to fly, I think? I never understood how some great pilots can accurately control an RC-plane fro
  11. Is de draad versleten, of is hij volgelopen met gestold filament? Dat kan gebeuren als hij gelekt heeft. In dit geval: lichtjes opwarmen tot pakweg 60...80°C zodat het plastic terug zacht wordt kan helpen. Ik heb zelf geen printers met olsson blocks, dus verder kan ik geen concrete tips geven.
  12. A tip: while slicing, always verify the model in layer-view mode, before starting a print. Then you can see all nozzle movements, and you can see layer by layer what is going to be printed (like brim, supports, model) and what not (too thin parts). Then this issue would already have come up during the slicing.
  13. I am not part of the Ultimaker team, nor software development, so I can't say what you should do. However, I think it would be best if you get more familiar with your 3D-editors and STL-export first, so you can always produce technically correct and "water-tight" STL-files (=no gaps between the STL-triangles). As soon as your STL-files are error-free solids, and you still feel there is room for improvement in the slicers, then of course you could write a report. This gives you a lot more chance that it will be welcomed and considered.
  14. Quite often you will need a couple of standard texts, such as a logo and a copyright notice. I make these beforehand and save them as separate designs, so I can always re-use them. Then, for surface text (=raised or recessed) I load the text-file and move it into the right location of the design. For raised text I union it with the model, so text plus model are only one solid. For recessed text I subtract it from the model, which again leaves me with only one solid, with cut-out characters. But I do the fusing only at the very end, after I am sure the text and model are
  15. Indeed, the first layer is crucial. For me, 0.1mm is too thin and gives occasional blank areas (=uncovered), 0.3mm is too thick and reduces bonding, and 0.2mm is best: this gives good coverage and good bonding (glass bed). But for other materials, beds, and printers, it could be different. Normally the bottom looks like this (ruler is in mm and cm): For PLA and printing on glass, wiping the glass with a tissue moistened with salt water greatly improves bonding, compared to printing on bare glass. See my old manual here (and then scroll down a bit): https://ww
  16. I would probably use the vertical position, and indeed use a very wide brim for bonding to the glass. Or design a custom brim in the CAD model. If you want to make custom supports in CAD for a single-nozzle printer, you could try free-hanging supports. Without supports the arcs might look a bit like grapes. These below are free-hanging supports. Note that this is a very small model: the opening where the supports are hanging in, is only 5mm wide. The ribs on top of the supports are 0.5mm wide and high. Between support-ribs and the underside of the roof is a tiny gap bet
  17. All plastics tend to creep under load, and deform permanently, especially PLA. Try printing a hook as cloth hanger, and after even a few days, you will see the deformation. Can be quite severe. So I am not sure if 3D-printing is the best for CNC-machine parts? Or maybe if you use glass-fiber or carbon-filled filaments? But I have no experience with them, so I can't give recommendations. I read that they tend to clog nozzles easily, and you need a hardened nozzle and feeder, as they are abrasive. Another option could be to print moulds in 3D, and then cast the parts with
  18. Have you verified if your STL-file is solid and error-free? I could imagine that if there would be STL-errors, some things might print well in one orientation, but not in another? In the beginning I tried designing text in SketchUp, and import that in my designs, because my editor DesignSpark Mechanical did not have a text editor function. And at that time I did not know the work-around via the dimensioning-tool. But SketchUp-text had lots of gaps in its vectors, they did not connect. That caused text to import poorly, and some characters got lost, or would not convert from surface
  19. Yes, as GregValiant said: you can best adapt your model to the size it is going to be printed in. If you scale it down, everything below the nozzle-width falls away (unless you apply tricks). And other parts might fuse together because the gaps become too small. Or you might no longer be able to access certain areas with tools to remove supports, etc. So you have to adapt these in the design. This is a bit similar to logo-design in a graphics editor: you need to redesign your logo for each size it is going to be printed in. If not, when scaling-up, the white spaces will seem too la
  20. Hi John, I think this is a good idea. And if it works for you, obviously, it works. If you would like, feel free to use my old warping test, shown in the photos above. I would be curious about the results, to see where the limits are? This is a small test that prints quickly: total model size = 50mm x 50mm; height=5mm; top-width of each arm = 10mm, bottom-width = 2mm. So, a tiny bottom area to bond to the glass, but a huge top area to produce warping forces, combined with steep overhangs peeling the model off the glass. And overhangs curling up.
  21. I thought I would add a few safety recommendations, as not everyone may be familiar with handling chemicals. (I have worked in the chemical industry with highly explosive and agressive chemicals, although very long ago.) When using chemicals like dichloromethane (=ethylene-chloride), ethylene-oxide, acetone, xylene, ether, and similar solvents, use good precautions. - Always use safety glasses. Not just any safety glasses, but the kind that look like diving goggles. So the spats can not fly parabolically behind it and still get in your eyes, as with normal glasses. - Always u
  22. I did tests with PET. In short: print as slow as you can, in as thin layers as you can, and as cold as you can. Due to printing slow in thin layers, the material will sit in the nozzle for a long time and start to burn/decompose, so you might need to print even below the recommended temp range. See my tests here: - upper row printed at 50mm/s, bottom row at 10mm/s - layer thickness from left to right (mm): 0.40, 0.30, 0.20, 0.10, 0.06 - dimensions of the test blocks: 10mm x 20mm x 10mm - watermark text is sitting halfway in the model A couple of year
  23. Do you mean cleaning the outside cone, or the inside, or both? After each print I immediately wipe the outside with a thick tissue, while it is still hot, so it is clean immediately. If material is burnt onto it, and I can't wipe it off, I use a brass M3 screw thread to carefully file off the ashes. Use brass or copper, never steel, because steel would damage the sensitive cone. And always be very carefull and gentle. Also, regularly applying teflon and/or PTFE to the outside helps reducing build-up of goo on the outside. I clean the inside with atomic pulls
  24. I would also use brim, because steep overhangs also tend to cause huge warping forces, and in addition they tend to curl up. If you don't want a brim all around the model, design a custom one in CAD on the places where you need it. A custom brim gives you the option to make it thicker too, if needed, for example 2 or 3 layers. Try if your bonding method can hold an inverted prism down while printing. If yes, 99.9% of your other models will work too, because this is a hard test. This one is going to succeed well. This one might soon come off
  25. If you haven't done these already: Maybe take a gcode file that goes well at home, and try that on the printers at work? And take a file that goes wrong at work, and try that at home? Then you know whether it is in the gcode or not? Exchange spools of filament at home and at work, just for a testprint. Print both with the same gcode file. Then you know if it is in the filament? I was thinking about worn-out white teflon couplers, but from what you said, I think you already replaced them, so that can't be the problem anymore? Idem for worn-out feeder wheels,
×
×
  • Create New...