Jump to content
Ultimaker Community of 3D Printing Experts


  • Content Count

  • Joined

  • Last visited

  • Days Won


Everything posted by geert_2

  1. Ask Simone Gierz, she can definitely make one for you. :-) See her TED-talk: https://www.youtube.com/watch?v=c0bsKc4tiuY
  2. Dental composites are extremely hard; these are the white fillings. They are particle filled (=sort of sand), methyl metacrylate based epoxies. But they are also extremely expensive, and light-cured, so you need special equipment (blue power-LED) and thin layers to cure it. And you need water-cooled diamond disks to cut and shape it after curing, you can't get through with a knife or steel bit. So these materials are not practical for other uses. But maybe you could simulate this concept? Print a mould, coat it with release spray, and then fill it with a mix of fine sand and epoxy?
  3. I don't know much about gcode, and even less about firmware, so this is just guessing. Could the problem be that "padding thing", that you see earlier in the gcode, at the end of the normal file? Try copying and inserting that padding at the end of your push-off sequences too? Apart from that, I think any resetting or homing is done at the start of a new print job, just like any normal print. In normal use an UM2 can start from whatever situation it was left in (warm/cold nozzle or bed; head or build-plate sitting anywhere), so that shouldn't cause problems I think?
  4. Maybe just remove the filament, so it "prints" empty?
  5. The brown spots on your print - if they got there while printing (not afterwards due to post-processing) - are likely material that got accumulated on the outside of the nozzle, then partially burned or decomposed, sagged and got deposited on the print. Or material that got partially burned inside the nozzle and then extruded. If your purpose is to make a model as a base to create silicone moulds later on, I would also recommend trying PLA. I have good experiences with Ultimaker Pearl PLA, and with colorFabb red and orange PLA/PHA. And smooth this later on, so the mould is smoother
  6. If you are not sure it will print well, maybe in CAD you could cut out a small area of the top-side (=with the red faces). Just a tiny cube that has all the problem-aspects? And print only that, and refine settings if required? So you don't waste too much material.
  7. I don't know this material, but if I would see this effect in PLA on my UM2 printers, this would be overextrusion. Is there a specific reason why you prefer ABS? Because it is known to be more difficult to print than materials like PLA, tough PLA and PET. (Although PLA can't handle warmer temperatures, and PET is more difficult to glue and paint than ABS.)
  8. In addition to the load of the supply: If the heated bed takes a very long time to heat up, for example for materials that need a higher bed temperature like ABS, a side effect of heating both nozzle and bed together might be that the molten filament in the nozzle gets burnt and clogs it up by the time the bed is ready. So, first bring the bed up to a stable temp, and only then start heating the nozzle to prevent product degradation and clogs. Especially with products where the melting temp and burning- or decomposition temp are very close together.
  9. I vaguely remember I had this error on an old computer, but not related to Cura but to browsers and graphic editors. If I remember well, it had to do with failing hardware, bad memory, or programs that made wrong calls to memory areas, or something like that? This would most often happen with programs with high memory use: graphic applications, browsers with lots of tabs open, 3D- and video-editing. Try if you also have it while using other software with very high memory-loads? Or run a diagnostics program for memory-tests? And let that run all night? If yes
  10. For now I think the best solution is to print the outlines at half the layer height (can that be done in the newest Cura versions?), and afterwards mechanically polish or chemically smooth the model, similar to acetone smoothing of ABS? But I don't know if this works on TPU?
  11. I can't answer your questions about breakaway, as I never used it. But concerning PVA-regulations: if you can not legally dissolve it and flush that waste-water down the drain, then maybe you could legally pour it over old newspapers, let dry, and throw away these newspapers? Then it does not pollute rivers. Very often old paper is recycled separately, this is the preferred option. But in our city it is also allowed to throw it in the regular "rest-section" of trash, because it makes it easier to burn that rest-section. See your local regulations. Or make papier-maché from it (=mix
  12. Yes, this is an impressive piece of art, both the modeling and the painting. And the printing.
  13. The bottoms of my parts generally look like these below. They seem to be squeezed considerably more into the glass, thus the nozzle being closer to the glass. If you could try that, it might improve overall bottom quality (if that would be desired). Concerning your very irregular corner: in addition to the possibility of the glass in that area being non-flat or greasy, as smithy says, I am wondering if this is the begin/end of the layer lines, or the landing/take-off zone if printing multiple parts? In that case I could imagine that the starting and stopping of the extrusion would
  14. You mean that dirty line going down? Could that be nozzle-leakage that is deposited? When printing PET, I have often seen that the nozzle leaks a little bit while traveling through air. And then on reaching the next wall, that drop is deposited on the side of the wall. On the next layer, another drop is deposited. And so on. If material accumulates on the outside of the nozzle, that could sag and also get deposited as blobs on the print. Not sure this is the cause, but it seems a possibility? I would say: just keep watching closely what happens while printin
  15. Yes, I can also see the reasoning from the radiologist. However, I am not sure that he is fully aware of the porosities, layer lines, PLA-degradation, and occasional blobs and strings in FDM 3D-prints, which could cause discomfort and health risks, and which require post-processing. Most collegues who ask me to 3D-print something, aren't aware of these, so I have several test pieces sitting around to show the typical limitations. Maybe the best is to just try all options, and see what works best? - a hard 3D-printed shell - a soft silicone liner (for comfort), insi
  16. This fascinating organic modeling style now slowly seems to become more mainstream. In a recent robot wars series (Battle Bots 2019, USA) there was a robot Quantum in this style (at left, after it won and threw the other bot out of the arena). Its beak can crush with several tons of force. This is a low-resolution screendump, but you can still see the beauty. These fighter robots are often brilliant pieces of engineering.
  17. Yes, you should start moulding on a printed model or on a testpiece anyway, until you have the procedure in your fingers. Don't experiment on sensitive persons. The application of liquid silicone itself on the hand would probably cause no problems, it is just a thick liquid. But the removal of the cured silicone might: you would have to pull and slide that cured silicone off, or cut it off by going under it with scissors. Both will require some force and shear action: in a normal person this is no problem, but on a very sensitive or weak skin it could do mechanical damage. I would
  18. I believe most 3D-printed full color models are painted or plated afterwards, like the excellent art we see from kmanstudios and cloakfiend. Full color models produced directly on a gypsum-powder based 3D-printer tend to have a quite rough structure, like sandstone. Like any gypsum model. After printing they are impregnated with a cyanoacrylate glue to make them stronger and smoother. But it is still gypsum, so if you drop it, it chips or breaks like gypsum. But if you would be a good traditional sculptor (=in sculpting by hand), but have no experience with 3D-sculpting
  19. What about "painting" a glove onto her hands? The first idea is of course latex, but that might *not* be a good choice because it could cause allergies, due to the enzymes it contains. And latex is said to shrink upon drying, so it might cause discomfort. I would not recommend this. Maybe painting liquid and reasonable fast curing silicone onto her hands might work? Silicone is relatively inert chemically, and it is also used in dentistry, and in arts: most soft masks and fake wounds are made from silicone. Be sure to use platinum-cured silicone (=addition cured), not t
  20. It was also my understanding that PLA-smoothing with acetone was due to modifiers, not the PLA itself. But for making our silicone moulds, it works well enough, and it doesn't destroy details. I haven't tried chloroform yet. Have you tried burning colorFabb PLA/PHA Natural (=uncolored)? When I tried burning it in a spoon in a bunsen burner a couple of years ago, it left a little bit of black powder dust, but not much. It could easily be wiped off. Contrary to for example PET which left a thick, glossy, enamel-like coating which was very hard to remove. For the tine holes in
  21. Not a solution, but maybe a workaround: if you would print in PLA, have you tried smoothing it with acetone or other chemicals? See the thread and photos of user cloakfiend on acetone-smoothing of PLA on this forum: he has done hundreds of models with excellent results. I also have done a couple of tests on colorFabb PLA/PHA: a quick brush-on of acetone tends to fill the little gaps and layer lines. But it does not fill larger gaps, nor removes features or defects like blobs and strings. See the photos. Top orange: untreated, has small openings due to minor
  22. Ik zie je vraag nu pas. Het antwoord is simpel: gewoon uitproberen... Begin met de standaardwaarden: voor mijn printers (Ultimaker 2) was dat voor PLA: 210°C, 50mm/s, bed 60°C. En dan een testprintje maken, en tijdens het printen in stapjes van 5°C de temperatuur verlagen en verhogen, en gewoon zien wat voor effect het heeft. Idem voor de snelheid, in stapjes van 10mm/s. Voor fijne modellen gebruik ik dikwijls: 25mm/s bij 195°C, 0.1mm layers. Voor ruwere modellen en 0.2mm layers blijf ik bij de standaard. Bed temperatuur blijf je beter af: benede
  23. In a plaintext editor, search for "[space] e???? [space]" or something like that, using wildcards, and delete them all? Or set them to zero? I don't know if it would work, but might be worth a try?
  24. My first idea was also: poor bed-adhesion in that spot, maybe due to the nozzle being too far away. But if it is always and only in one corner of the model, no matter where it is put on the build plate, maybe it could also be mechanical stuttering or excessive play, when changing direction? Or both?
  25. I think it was 80°C, maybe 85°C, something around that. If you would have binoculars, or a telescope, you could try to hold them upside-down with the ocular very close to the model, close to a bright light. Quality won't be good, and you will get a lot of deformation, but it might be good enough for inspection. A telescope works exactly opposite to a microscope: the lenses are swapped (and in real life of course adapted for minimal distortion). In a microscope the little, most curved lense is close to the object, and the flattest and big lense is the ocular. For people
  • Create New...