Jump to content
Ultimaker Community of 3D Printing Experts

geert_2

Ambassador
  • Content Count

    1,842
  • Joined

  • Last visited

  • Days Won

    24

Everything posted by geert_2

  1. I wanted to fly RC-planes, but I can't even drive and park an RC-car: I keep getting left and right mixed-up. So I dare not try a plane where fast reactions are required, and in a roll even up and down get inverted. Maybe a huge RC-containership would go, because it is so slow I would have enough time to think the inversions through. But I am not into ships... Concerning the weight, if you visually compare old lightweight and new heavier prints, isn't there any visible difference? Are there added structures, or is just everything thicker? A 30% increase should be visible somewhere,
  2. Just a question: this "increased weight", is that: (1) Calculated and indicated weight in Cura, prior to printing? Or (2) is it a measured increase on a scale, after printing? If (1), then could it be that Cura also calculates the weight of printing supports? Just a thought that crossed my mind, I don't know how realistic it is... About RC-planes: has anyone of you ever built one with a live camera, and a VR-headset, so you can fly it from a real pilot's viewpoint? Should be much easier to fly, I think? I never understood how some great pilots can accurately control an RC-plane fro
  3. Is de draad versleten, of is hij volgelopen met gestold filament? Dat kan gebeuren als hij gelekt heeft. In dit geval: lichtjes opwarmen tot pakweg 60...80°C zodat het plastic terug zacht wordt kan helpen. Ik heb zelf geen printers met olsson blocks, dus verder kan ik geen concrete tips geven.
  4. A tip: while slicing, always verify the model in layer-view mode, before starting a print. Then you can see all nozzle movements, and you can see layer by layer what is going to be printed (like brim, supports, model) and what not (too thin parts). Then this issue would already have come up during the slicing.
  5. I am not part of the Ultimaker team, nor software development, so I can't say what you should do. However, I think it would be best if you get more familiar with your 3D-editors and STL-export first, so you can always produce technically correct and "water-tight" STL-files (=no gaps between the STL-triangles). As soon as your STL-files are error-free solids, and you still feel there is room for improvement in the slicers, then of course you could write a report. This gives you a lot more chance that it will be welcomed and considered.
  6. Quite often you will need a couple of standard texts, such as a logo and a copyright notice. I make these beforehand and save them as separate designs, so I can always re-use them. Then, for surface text (=raised or recessed) I load the text-file and move it into the right location of the design. For raised text I union it with the model, so text plus model are only one solid. For recessed text I subtract it from the model, which again leaves me with only one solid, with cut-out characters. But I do the fusing only at the very end, after I am sure the text and model are
  7. Indeed, the first layer is crucial. For me, 0.1mm is too thin and gives occasional blank areas (=uncovered), 0.3mm is too thick and reduces bonding, and 0.2mm is best: this gives good coverage and good bonding (glass bed). But for other materials, beds, and printers, it could be different. Normally the bottom looks like this (ruler is in mm and cm): For PLA and printing on glass, wiping the glass with a tissue moistened with salt water greatly improves bonding, compared to printing on bare glass. See my old manual here (and then scroll down a bit): https://ww
  8. I would probably use the vertical position, and indeed use a very wide brim for bonding to the glass. Or design a custom brim in the CAD model. If you want to make custom supports in CAD for a single-nozzle printer, you could try free-hanging supports. Without supports the arcs might look a bit like grapes. These below are free-hanging supports. Note that this is a very small model: the opening where the supports are hanging in, is only 5mm wide. The ribs on top of the supports are 0.5mm wide and high. Between support-ribs and the underside of the roof is a tiny gap bet
  9. All plastics tend to creep under load, and deform permanently, especially PLA. Try printing a hook as cloth hanger, and after even a few days, you will see the deformation. Can be quite severe. So I am not sure if 3D-printing is the best for CNC-machine parts? Or maybe if you use glass-fiber or carbon-filled filaments? But I have no experience with them, so I can't give recommendations. I read that they tend to clog nozzles easily, and you need a hardened nozzle and feeder, as they are abrasive. Another option could be to print moulds in 3D, and then cast the parts with
  10. Have you verified if your STL-file is solid and error-free? I could imagine that if there would be STL-errors, some things might print well in one orientation, but not in another? In the beginning I tried designing text in SketchUp, and import that in my designs, because my editor DesignSpark Mechanical did not have a text editor function. And at that time I did not know the work-around via the dimensioning-tool. But SketchUp-text had lots of gaps in its vectors, they did not connect. That caused text to import poorly, and some characters got lost, or would not convert from surface
  11. Yes, as GregValiant said: you can best adapt your model to the size it is going to be printed in. If you scale it down, everything below the nozzle-width falls away (unless you apply tricks). And other parts might fuse together because the gaps become too small. Or you might no longer be able to access certain areas with tools to remove supports, etc. So you have to adapt these in the design. This is a bit similar to logo-design in a graphics editor: you need to redesign your logo for each size it is going to be printed in. If not, when scaling-up, the white spaces will seem too la
  12. Hi John, I think this is a good idea. And if it works for you, obviously, it works. If you would like, feel free to use my old warping test, shown in the photos above. I would be curious about the results, to see where the limits are? This is a small test that prints quickly: total model size = 50mm x 50mm; height=5mm; top-width of each arm = 10mm, bottom-width = 2mm. So, a tiny bottom area to bond to the glass, but a huge top area to produce warping forces, combined with steep overhangs peeling the model off the glass. And overhangs curling up.
  13. I thought I would add a few safety recommendations, as not everyone may be familiar with handling chemicals. (I have worked in the chemical industry with highly explosive and agressive chemicals, although very long ago.) When using chemicals like dichloromethane (=ethylene-chloride), ethylene-oxide, acetone, xylene, ether, and similar solvents, use good precautions. - Always use safety glasses. Not just any safety glasses, but the kind that look like diving goggles. So the spats can not fly parabolically behind it and still get in your eyes, as with normal glasses. - Always u
  14. I did tests with PET. In short: print as slow as you can, in as thin layers as you can, and as cold as you can. Due to printing slow in thin layers, the material will sit in the nozzle for a long time and start to burn/decompose, so you might need to print even below the recommended temp range. See my tests here: - upper row printed at 50mm/s, bottom row at 10mm/s - layer thickness from left to right (mm): 0.40, 0.30, 0.20, 0.10, 0.06 - dimensions of the test blocks: 10mm x 20mm x 10mm - watermark text is sitting halfway in the model A couple of year
  15. Do you mean cleaning the outside cone, or the inside, or both? After each print I immediately wipe the outside with a thick tissue, while it is still hot, so it is clean immediately. If material is burnt onto it, and I can't wipe it off, I use a brass M3 screw thread to carefully file off the ashes. Use brass or copper, never steel, because steel would damage the sensitive cone. And always be very carefull and gentle. Also, regularly applying teflon and/or PTFE to the outside helps reducing build-up of goo on the outside. I clean the inside with atomic pulls
  16. I would also use brim, because steep overhangs also tend to cause huge warping forces, and in addition they tend to curl up. If you don't want a brim all around the model, design a custom one in CAD on the places where you need it. A custom brim gives you the option to make it thicker too, if needed, for example 2 or 3 layers. Try if your bonding method can hold an inverted prism down while printing. If yes, 99.9% of your other models will work too, because this is a hard test. This one is going to succeed well. This one might soon come off
  17. If you haven't done these already: Maybe take a gcode file that goes well at home, and try that on the printers at work? And take a file that goes wrong at work, and try that at home? Then you know whether it is in the gcode or not? Exchange spools of filament at home and at work, just for a testprint. Print both with the same gcode file. Then you know if it is in the filament? I was thinking about worn-out white teflon couplers, but from what you said, I think you already replaced them, so that can't be the problem anymore? Idem for worn-out feeder wheels,
  18. Because most of my models are small, or have fine details that I want to preserve. For example in the models above, the yellow bar has to slide smoothly in the red clamp, without too much tolerance. They are for medical use, hence the smoothing to remove layer lines and make desinfection easier. And I don't want to spend hours and hours of post-processing on filing and grinding. So, printing slower, and in thinner layers, removes most of the need of post-processing. Then I have less ringing, less thickening at corners (due to the head slowing down to take the corner), less stringing, less blob
  19. I usually print PET at: nozzle 215...225°C, bed 90°C, speed 25...30mm/s, layers 0.06...0.20mm thick, and no cooling if there are no overhangs and bridges. If bridges/overhangs, then a little bit of fan is needed, but that reduces layer bonding. And yes, expect more stringing and worse bridging than with PLA. These are PET: the left one is as-printed, the right one is smoothed with dichloromethane. The thumbscrew is a standard nylon M4, with 16mm head.
  20. A couple of years ago I did a lot of tests with small text: caps height 3.5mm, character width 2mm, leg width 0.5mm. Recessed text, thus engraved, always came out worst. This is because the nozzle can not get into tiny openings in characters like: N, M, K, H, G, B, 8, etc... So they get completely messed-up and the openings (engravings) get closed. You are better off making raised text. While it still looks a bit Flintstone-like, it is easier to read. If it has to be recessed somewhat to prevent it from being damaged easily, consider recessing a plate surrounding the text, but rais
  21. This can also be used for bonding PLA and PET. Or bonding can be an undesired side-effect if you are not careful enough. But I don't know if the bond will hold forever, how strong it is compared to the material itself, or if it is susceptible to shocks (like cyano-acrylates: they can be knocked apart) or to heat-decomposition. Here a few pics of the bonding. Also note that the smoothing removes layer lines, and seals underextrusion if not too bad, but due to the high-gloss and reflections, it might make the surface look rougher than the dull raw print before, in some ca
  22. Thanks for the feedback. I only see it now, must have overlooked it before. With that amount of shrinking, it could be good for artwork, toys like model railroad stuff, and other models that don't need exact dimensions. But less suitable for rulers or tight-fitting technical parts. If you would have real models that you can show, I would also appreciate that. In green state, after sintering, and then after further post-processing (tumbling, sanding,...). If possible, also in close-up? Would be good to see the differences in material structure.
  23. For me, the salt method works very well for long, low, and 100% filled models like rulers, that take 1 to 3 hours to print. Thus for my typical models. I use it all the time, and almost never use any other method. It gives excellent bonding for PLA (may not work for any other materials), when the glass is 60°C. But no bonding at all below 25°C, so models come off by themself after cooling down. No need to remove the glass from the printer. I just drop a few drops of salt water on the glass, wipe it, and ready to go. That easy of use is the most attractive for me. However, narrow bu
  24. I read on the datasheets that Aquasys dissolves at 70°C-80°C: does that mean that this is the minimum temperature to make it dissolve, or is that just the optimal for the fastest results? How does it perform in cold or hand-warm water, thus below 45°C, for PLA? It would be good if you could some feedback on your experiences.
  25. If it are rods, then it should be the *outer rotating rods*, those with the belts. Because it is their wobbly rotation that causes the pattern (I think). Try measuring and calculating if the circumference of the pulley wheel and belt matches the distance between the spots? Visually guestimating, it could. Or you could make it more easy: using a marker, mark a spot on the pulley and on the belt, rotate the pulley, and each time it comes along the belt, then mark the belt as well on that same matching spot. After a few rotations, your belt should have marks with the exact same distan
×
×
  • Create New...