Jump to content
Ultimaker Community of 3D Printing Experts
Sign in to follow this  
inventiprint

My second extruder isn't recognized by the firmware

Recommended Posts

I bought my Ultimaker in the beginning of this year 2013 and yesterday I set up my additional hot end and feeder. I also used the new Marlin builder (from http://marlinbuilder.robotfuzz.com/) to create the hex file to update my firmware. I also updated my Cura preferences and restarted Cura. I'm using Cura 13.06.4. When starting a new dual print both hot ends heat up but only one extruder motor is working. The ulticontroller is only registering one motor but 2 hot ends. The firmware update was for the heated bed and dual extrude set up on an Ultimaker. I'm thinking either the extruder 2 port is not working or the firmware update is not correct. I know both motors work because I swapped them and when either one is connected into extruder 1 port they both function normally. How do I test the second extruder port to make sure it's functioning properly? And how can I get the firmware or ulticontroller to recognized the second extruder. I should point out that I did wait for the hot ends to come up to the correct temperature to test the extruder. Below is the my current config.h file from the marlin builder.

#ifndef CONFIGURATION_H

#define CONFIGURATION_H

 

// This configuration file contains the basic settings.

// Advanced settings can be found in Configuration_adv.h

// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration

 

// User-specified version info of this build to display in [Pronterface, etc] terminal window during

// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this

// build by the user have been successfully uploaded into firmware.

#define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ // build date and time

#define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.

 

// SERIAL_PORT selects which serial port should be used for communication with the host.

// This allows the connection of wireless adapters (for instance) to non-default port pins.

// Serial port 0 is still used by the Arduino bootloader regardless of this setting.

#define SERIAL_PORT 0

 

// This determines the communication speed of the printer

#define BAUDRATE 250000

//#define BAUDRATE 115200

 

//// The following define selects which electronics board you have. Please choose the one that matches your setup

// 10 = Gen7 custom (Alfons3 Version) "https://github.com/Alfons3/Generation_7_Electronics"

// 11 = Gen7 v1.1, v1.2 = 11

// 12 = Gen7 v1.3

// 13 = Gen7 v1.4

// 3 = MEGA/RAMPS up to 1.2 = 3

// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)

// 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)

// 35 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Fan)

// 4 = Duemilanove w/ ATMega328P pin assignment

// 5 = Gen6

// 51 = Gen6 deluxe

// 6 = Sanguinololu < 1.2

// 62 = Sanguinololu 1.2 and above

// 63 = Melzi

// 64 = STB V1.1

// 65 = Azteeg X1

// 66 = Melzi with ATmega1284 (MaKr3d version)

// 7 = Ultimaker

// 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)

// 77 = 3Drag Controller

// 8 = Teensylu

// 80 = Rumba

// 81 = Printrboard (AT90USB1286)

// 82 = Brainwave (AT90USB646)

// 9 = Gen3+

// 70 = Megatronics

// 701= Megatronics v2.0

// 702= Minitronics v1.0

// 90 = Alpha OMCA board

// 91 = Final OMCA board

// 301 = Rambo

// 21 = Elefu Ra Board (v3)

 

#ifndef MOTHERBOARD

#define MOTHERBOARD 7

#endif

 

// Define this to set a custom name for your generic Mendel,

// #define CUSTOM_MENDEL_NAME "This Mendel"

 

// This defines the number of extruders

#define EXTRUDERS 2

 

//// The following define selects which power supply you have. Please choose the one that matches your setup

// 1 = ATX

// 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)

 

#define POWER_SUPPLY 1

 

 

//===========================================================================

//============================== Delta Settings =============================

//===========================================================================

// Enable DELTA kinematics

//#define DELTA

 

// Make delta curves from many straight lines (linear interpolation).

// This is a trade-off between visible corners (not enough segments)

// and processor overload (too many expensive sqrt calls).

#define DELTA_SEGMENTS_PER_SECOND 200

 

// Center-to-center distance of the holes in the diagonal push rods.

#define DELTA_DIAGONAL_ROD 250.0 // mm

 

// Horizontal offset from middle of printer to smooth rod center.

#define DELTA_SMOOTH_ROD_OFFSET 175.0 // mm

 

// Horizontal offset of the universal joints on the end effector.

#define DELTA_EFFECTOR_OFFSET 33.0 // mm

 

// Horizontal offset of the universal joints on the carriages.

#define DELTA_CARRIAGE_OFFSET 18.0 // mm

 

// Effective horizontal distance bridged by diagonal push rods.

#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)

 

// Effective X/Y positions of the three vertical towers.

#define SIN_60 0.8660254037844386

#define COS_60 0.5

#define DELTA_TOWER1_X -SIN_60*DELTA_RADIUS // front left tower

#define DELTA_TOWER1_Y -COS_60*DELTA_RADIUS

#define DELTA_TOWER2_X SIN_60*DELTA_RADIUS // front right tower

#define DELTA_TOWER2_Y -COS_60*DELTA_RADIUS

#define DELTA_TOWER3_X 0.0 // back middle tower

#define DELTA_TOWER3_Y DELTA_RADIUS

 

// Diagonal rod squared

#define DELTA_DIAGONAL_ROD_2 pow(DELTA_DIAGONAL_ROD,2)

 

//===========================================================================

//=============================Thermal Settings ============================

//===========================================================================

//

//--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table

//

//// Temperature sensor settings:

// -2 is thermocouple with MAX6675 (only for sensor 0)

// -1 is thermocouple with AD595

// 0 is not used

// 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)

// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)

// 3 is mendel-parts thermistor (4.7k pullup)

// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!

// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan) (4.7k pullup)

// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)

// 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)

// 71 is 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)

// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)

// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)

// 10 is 100k RS thermistor 198-961 (4.7k pullup)

// 60 is 100k Maker's Tool Works Kapton Bed Thermister

//

// 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k

// (but gives greater accuracy and more stable PID)

// 51 is 100k thermistor - EPCOS (1k pullup)

// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)

// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan) (1k pullup)

 

#define TEMP_SENSOR_0 -1

#define TEMP_SENSOR_1 -1

#define TEMP_SENSOR_2 0

#define TEMP_SENSOR_BED 1

 

// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.

//#define TEMP_SENSOR_1_AS_REDUNDANT

#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10

 

// Actual temperature must be close to target for this long before M109 returns success

#define TEMP_RESIDENCY_TIME 6 // (seconds)

#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one

#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.

 

// The minimal temperature defines the temperature below which the heater will not be enabled It is used

// to check that the wiring to the thermistor is not broken.

// Otherwise this would lead to the heater being powered on all the time.

#define HEATER_0_MINTEMP 5

#define HEATER_1_MINTEMP 5

#define HEATER_2_MINTEMP 5

#define BED_MINTEMP 5

 

// When temperature exceeds max temp, your heater will be switched off.

// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!

// You should use MINTEMP for thermistor short/failure protection.

#define HEATER_0_MAXTEMP 275

#define HEATER_1_MAXTEMP 275

#define HEATER_2_MAXTEMP 275

#define BED_MAXTEMP 150

 

// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the

// average current. The value should be an integer and the heat bed will be turned on for 1 interval of

// HEATER_BED_DUTY_CYCLE_DIVIDER intervals.

//#define HEATER_BED_DUTY_CYCLE_DIVIDER 4

 

// PID settings:

// Comment the following line to disable PID and enable bang-bang.

#define PIDTEMP

#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current

#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current

#ifdef PIDTEMP

//#define PID_DEBUG // Sends debug data to the serial port.

//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX

#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature

// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.

#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term

#define K1 0.95 //smoothing factor within the PID

#define PID_dT ((16.0 * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine

 

// If you are using a preconfigured hotend then you can use one of the value sets by uncommenting it

// Ultimaker

#define DEFAULT_Kp 22.2

#define DEFAULT_Ki 1.08

#define DEFAULT_Kd 114

 

// Makergear

// #define DEFAULT_Kp 7.0

// #define DEFAULT_Ki 0.1

// #define DEFAULT_Kd 12

 

// Mendel Parts V9 on 12V

// #define DEFAULT_Kp 63.0

// #define DEFAULT_Ki 2.25

// #define DEFAULT_Kd 440

#endif // PIDTEMP

 

// Bed Temperature Control

// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis

//

// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.

// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz,

// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.

// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.

// If your configuration is significantly different than this and you don't understand the issues involved, you probably

// shouldn't use bed PID until someone else verifies your hardware works.

// If this is enabled, find your own PID constants below.

//#define PIDTEMPBED

//

//#define BED_LIMIT_SWITCHING

 

// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.

// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)

// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,

// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)

#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current

 

#ifdef PIDTEMPBED

//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)

//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)

#define DEFAULT_bedKp 10.00

#define DEFAULT_bedKi .023

#define DEFAULT_bedKd 305.4

 

//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)

//from pidautotune

// #define DEFAULT_bedKp 97.1

// #define DEFAULT_bedKi 1.41

// #define DEFAULT_bedKd 1675.16

 

// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.

#endif // PIDTEMPBED

 

 

 

//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit

//can be software-disabled for whatever purposes by

#define PREVENT_DANGEROUS_EXTRUDE

//if PREVENT_DANGEROUS_EXTRUDE is on, you can still disable (uncomment) very long bits of extrusion separately.

#define PREVENT_LENGTHY_EXTRUDE

 

#define EXTRUDE_MINTEMP 170

#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.

 

//===========================================================================

//=============================Mechanical Settings===========================

//===========================================================================

 

// Uncomment the following line to enable CoreXY kinematics

// #define COREXY

 

// coarse Endstop Settings

#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors

 

#ifndef ENDSTOPPULLUPS

// fine Enstop settings: Individual Pullups. will be ignored if ENDSTOPPULLUPS is defined

// #define ENDSTOPPULLUP_XMAX

// #define ENDSTOPPULLUP_YMAX

// #define ENDSTOPPULLUP_ZMAX

// #define ENDSTOPPULLUP_XMIN

// #define ENDSTOPPULLUP_YMIN

// #define ENDSTOPPULLUP_ZMIN

#endif

 

#ifdef ENDSTOPPULLUPS

#define ENDSTOPPULLUP_XMAX

#define ENDSTOPPULLUP_YMAX

#define ENDSTOPPULLUP_ZMAX

#define ENDSTOPPULLUP_XMIN

#define ENDSTOPPULLUP_YMIN

#define ENDSTOPPULLUP_ZMIN

#endif

 

// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.

const bool X_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.

const bool Y_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.

const bool Z_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.

const bool X_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.

const bool Y_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.

const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.

//#define DISABLE_MAX_ENDSTOPS

//#define DISABLE_MIN_ENDSTOPS

 

// Disable max endstops for compatibility with endstop checking routine

#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)

#define DISABLE_MAX_ENDSTOPS

#endif

 

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1

#define X_ENABLE_ON 0

#define Y_ENABLE_ON 0

#define Z_ENABLE_ON 0

#define E_ENABLE_ON 0 // For all extruders

 

// Disables axis when it's not being used.

#define DISABLE_X false

#define DISABLE_Y false

#define DISABLE_Z false

#define DISABLE_E false // For all extruders

 

#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true

#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false

#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true

#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false

#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false

#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false

 

// ENDSTOP SETTINGS:

// Sets direction of endstops when homing; 1=MAX, -1=MIN

#define X_HOME_DIR -1

#define Y_HOME_DIR -1

#define Z_HOME_DIR -1

 

#define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS.

#define max_software_endstops true // If true, axis won't move to coordinates greater than the defined lengths below.

// Travel limits after homing

#define X_MAX_POS 205

#define X_MIN_POS 0

#define Y_MAX_POS 205

#define Y_MIN_POS 0

#define Z_MAX_POS 200

#define Z_MIN_POS 0

 

#define X_MAX_LENGTH (X_MAX_POS - X_MIN_POS)

#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)

#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)

 

// The position of the homing switches

//#define MANUAL_HOME_POSITIONS // If defined, MANUAL_*_HOME_POS below will be used

//#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)

 

//Manual homing switch locations:

// For deltabots this means top and center of the cartesian print volume.

#define MANUAL_X_HOME_POS 0

#define MANUAL_Y_HOME_POS 0

#define MANUAL_Z_HOME_POS 0

//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.

 

//// MOVEMENT SETTINGS

#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E

#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)

 

// default settings

 

#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402, 78.7402, 533.3333333, 844.1} // default steps per unit for Ultimaker

#define DEFAULT_MAX_FEEDRATE {350, 350, 10, 25} // (mm/sec)

#define DEFAULT_MAX_ACCELERATION {9000, 9000, 200, 10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.

 

#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves

#define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for retracts

 

// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).

// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).

// For the other hotends it is their distance from the extruder 0 hotend.

// #define EXTRUDER_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis

// #define EXTRUDER_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis

 

// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)

#define DEFAULT_XYJERK 20.0 // (mm/sec)

#define DEFAULT_ZJERK 0.4 // (mm/sec)

#define DEFAULT_EJERK 5.0 // (mm/sec)

 

//===========================================================================

//=============================Additional Features===========================

//===========================================================================

 

// EEPROM

// the microcontroller can store settings in the EEPROM, e.g. max velocity...

// M500 - stores paramters in EEPROM

// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).

// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.

//define this to enable eeprom support

#define EEPROM_SETTINGS

//to disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:

// please keep turned on if you can.

#define EEPROM_CHITCHAT

 

// Preheat Constants

#define PLA_PREHEAT_HOTEND_TEMP 180

#define PLA_PREHEAT_HPB_TEMP 70

#define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255

 

#define ABS_PREHEAT_HOTEND_TEMP 240

#define ABS_PREHEAT_HPB_TEMP 100

#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255

 

//LCD and SD support

//#define ULTRA_LCD //general lcd support, also 16x2

//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)

#define SDSUPPORT // Enable SD Card Support in Hardware Console

//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)

 

#define ULTIMAKERCONTROLLER //as available from the ultimaker online store.

//#define ULTIPANEL //the ultipanel as on thingiverse

 

// The MaKr3d Makr-Panel with graphic controller and SD support

// http://reprap.org/wiki/MaKr3d_MaKrPanel

//#define MAKRPANEL

 

// The RepRapDiscount Smart Controller (white PCB)

// http://reprap.org/wiki/RepRapDiscount_Smart_Controller

//#define REPRAP_DISCOUNT_SMART_CONTROLLER

 

// The GADGETS3D G3D LCD/SD Controller (blue PCB)

// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel

//#define G3D_PANEL

 

// The RepRapDiscount FULL GRAPHIC Smart Controller (quadratic white PCB)

// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller

//

// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib

//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER

 

// The RepRapWorld REPRAPWORLD_KEYPAD v1.1

// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626

//#define REPRAPWORLD_KEYPAD

//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // how much should be moved when a key is pressed, eg 10.0 means 10mm per click

 

// The Elefu RA Board Control Panel

// http://www.elefu.com/index.php?route=product/product&product_id=53

// REMEMBER TO INSTALL LiquidCrystal_I2C.h in your ARUDINO library folder: https://github.com/kiyoshigawa/LiquidCrystal_I2C

//#define RA_CONTROL_PANEL

 

//automatic expansion

#if defined (MAKRPANEL)

#define DOGLCD

#define SDSUPPORT

#define ULTIPANEL

#define NEWPANEL

#define DEFAULT_LCD_CONTRAST 17

#endif

 

#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)

#define DOGLCD

#define U8GLIB_ST7920

#define REPRAP_DISCOUNT_SMART_CONTROLLER

#endif

 

#if defined(ULTIMAKERCONTROLLER) || defined(REPRAP_DISCOUNT_SMART_CONTROLLER) || defined(G3D_PANEL)

#define ULTIPANEL

#define NEWPANEL

#endif

 

#if defined(REPRAPWORLD_KEYPAD)

#define NEWPANEL

#define ULTIPANEL

#endif

#if defined(RA_CONTROL_PANEL)

#define ULTIPANEL

#define NEWPANEL

#define LCD_I2C_TYPE_PCA8574

#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander

#endif

 

//I2C PANELS

 

//#define LCD_I2C_SAINSMART_YWROBOT

#ifdef LCD_I2C_SAINSMART_YWROBOT

// This uses the LiquidCrystal_I2C library ( https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home )

// Make sure it is placed in the Arduino libraries directory.

#define LCD_I2C_TYPE_PCF8575

#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander

#define NEWPANEL

#define ULTIPANEL

#endif

 

// PANELOLU2 LCD with status LEDs, separate encoder and click inputs

//#define LCD_I2C_PANELOLU2

#ifdef LCD_I2C_PANELOLU2

// This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )

// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.

// (v1.2.3 no longer requires you to define PANELOLU in the LiquidTWI2.h library header file)

// Note: The PANELOLU2 encoder click input can either be directly connected to a pin

// (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).

#define LCD_I2C_TYPE_MCP23017

#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander

#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD

#define NEWPANEL

#define ULTIPANEL

#endif

 

// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs

//#define LCD_I2C_VIKI

#ifdef LCD_I2C_VIKI

// This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )

// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.

// Note: The pause/stop/resume LCD button pin should be connected to the Arduino

// BTN_ENC pin (or set BTN_ENC to -1 if not used)

#define LCD_I2C_TYPE_MCP23017

#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander

#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later)

#define NEWPANEL

#define ULTIPANEL

#endif

 

#ifdef ULTIPANEL

// #define NEWPANEL //enable this if you have a click-encoder panel

#define SDSUPPORT

#define ULTRA_LCD

#ifdef DOGLCD // Change number of lines to match the DOG graphic display

#define LCD_WIDTH 20

#define LCD_HEIGHT 5

#else

#define LCD_WIDTH 20

#define LCD_HEIGHT 4

#endif

#else //no panel but just lcd

#ifdef ULTRA_LCD

#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display

#define LCD_WIDTH 20

#define LCD_HEIGHT 5

#else

#define LCD_WIDTH 16

#define LCD_HEIGHT 2

#endif

#endif

#endif

 

// default LCD contrast for dogm-like LCD displays

#ifdef DOGLCD

# ifndef DEFAULT_LCD_CONTRAST

# define DEFAULT_LCD_CONTRAST 32

# endif

#endif

 

// Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino

#define FAST_PWM_FAN

 

// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency

// which is not ass annoying as with the hardware PWM. On the other hand, if this frequency

// is too low, you should also increment SOFT_PWM_SCALE.

//#define FAN_SOFT_PWM

 

// Incrementing this by 1 will double the software PWM frequency,

// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.

// However, control resolution will be halved for each increment;

// at zero value, there are 128 effective control positions.

#define SOFT_PWM_SCALE 0

 

// M240 Triggers a camera by emulating a Canon RC-1 Remote

// Data from: http://www.doc-diy.net/photo/rc-1_hacked/

// #define PHOTOGRAPH_PIN 23

 

// SF send wrong arc g-codes when using Arc Point as fillet procedure

//#define SF_ARC_FIX

 

// Support for the BariCUDA Paste Extruder.

//#define BARICUDA

 

/*********************************************************************\

* R/C SERVO support

* Sponsored by TrinityLabs, Reworked by codexmas

**********************************************************************/

 

// Number of servos

//

// If you select a configuration below, this will receive a default value and does not need to be set manually

// set it manually if you have more servos than extruders and wish to manually control some

// leaving it undefined or defining as 0 will disable the servo subsystem

// If unsure, leave commented / disabled

//

//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command

 

// Servo Endstops

//

// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.

// Use M206 command to correct for switch height offset to actual nozzle height. Store that setting with M500.

//

//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1

//#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 70,0} // X,Y,Z Axis Extend and Retract angles

 

#include "Configuration_adv.h"

#include "thermistortables.h"

 

#endif //__CONFIGURATION_H

 

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Our picks

    • Taking Advantage of DfAM
      This is a statement that’s often made about AM/3DP. I'll focus on the way DfAM can take advantage of some of the unique capabilities that AM and 3DP have to offer. I personally think that the use of AM/3DP for light-weighting is one of it’s most exciting possibilities and one that could play a key part in the sustainability of design and manufacturing in the future.
        • Like
      • 3 replies
×

Important Information

Welcome to the Ultimaker Community of 3D printing experts. Visit the following links to read more about our Terms of Use or our Privacy Policy. Thank you!