UltiMaker uses functional, analytical and tracking cookies. Tracking cookies enhance your experience on our website and may also collect your personal data outside of Ultimaker websites. If you agree with the use of tracking cookies, click “I agree, continue browsing”. You can withdraw your consent at any time. If you do not consent with the use of tracking cookies, click “Refuse”. You can find more information about cookies on our Privacy and Cookie Policy page.
"Alright" you say, "what am I supposed to do, to generate the CAD design for these circuit boards?" "Surely you don't suggest I draw them with a 3D printing CAD software, trace by laborious trace?" Right! I did do that for the test circuit board in OpenSCAD, and boy was it a labor of love AKA a pain in the rear! "There must be a better way!", I thought. And there was.
First let me say that what is really and truly needed is a Gerber to STL or even Gerber to gCode translation utility. That's not so super difficult to make as Gerbers are basically mostly of the format go here in (X, Y) then go there in (X, Y) and so on, and both STL and gCode can be represented like that.
So certainly there may be in existence or will soon exist such software. I could not find it with a quick Google search anyway, so I developed a point and click workflow that is certainly a kludge but does get the job done for now. It goes like this.
You begin by designing your PCB in your favorite flavor of PCB CAD tool (I chose Eagle), then the first piece of jujitsu is you save the layers to file in PDF format. At least that's how I could do it with Eagle. After that my second piece of jujitsu is to double click on each PDF file and use Preview (I'm on a Mac) to export the PDF file as a PNG file. You may generate the PDF file another way and that's fine.
Then for my third piece of jujitsu I read those PNG files into OpenSCAD and saved them as STL files, so I have three STL files at that point. For the final piece of jujitsu I generate the each layer of conductor and difference() image of insulator for each layer, resulting in six separate STL files.
Now with those six STL files, we can print them all, insulator first and conductor second for best quality results (i think so anyway), or we can combine the first two conductor and the first two insulator layers, print the conductor layers first, , then finally print the third conductor layer and skip the third insulating layer altogether, resulting in only three print steps for a two layer board. I found that combo approach to be confusing mentally and lower quality in print form because of all the Zhop-hop-hopping around leaving angel hare (also known as boogers) all over the board, which we really cannot tolerate because it shorts the conductors.
Well there is one final tip in this crude and not-really-complete description, which is that we need sockets for our chips. The crudeness of the 0.4mm nozzle, a necessary minimum for the conductive filament to work (preferably 0.6mm), does not really support pin insertion and nor does it grab into the pins, so some type of friction fit socket is useful here.
I'm still working on that, for now I'm just adding large pin blocks that are spaced closely enough for a chip to be inserted either upside down or with the legs folded beneath it or trimmed with flush cutters and forced into the friction fit socket. More to follow on that technique and how to introduce it into the CAD files as a seventh layer (using custom footprints in the PCB CAD software).
So by now you've got the jist of it, you are a new jujitsu apprentice and you have at least an approximate understanding of that to do. Details and specifics to follow.
Les
Les go practice our CAD jujitsu!
Link to post
Share on other sites
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
In this stable release, Cura 5.3 achieves yet another huge leap forward in 3D printing thanks to material interlocking! As well as introducing an expanded recommended print settings menu and lots of print quality improvements. Not to mention, a whole bunch of new printer profiles for non-UltiMaker printers!
The UltiMaker S7 is built on the success of the UltiMaker S5 and its design decisions were heavily based on feedback from customers.
So what’s new?
The obvious change is the S7’s height. It now includes an integrated Air Manager. This filters the exhaust air of every print and also improves build temperature stability. To further enclose the build chamber the S7 only has one magnetically latched door.
The build stack has also been completely redesigned. A PEI-coated flexible steel build plate makes a big difference to productivity. Not only do you not need tools to pop a printed part off. But we also don’t recommend using or adhesion structures for UltiMaker materials (except PC, because...it’s PC). Along with that, 4 pins and 25 magnets make it easy to replace the flex plate perfectly – even with one hand.
The re-engineered print head has an inductive sensor which reduces noise when probing the build plate. This effectively makes it much harder to not achieve a perfect first layer, improving overall print success. We also reversed the front fan direction (fewer plastic hairs, less maintenance), made the print core door magnets stronger, and add a sensor that helps avoid flooding.
The UltiMaker S7 also includes quality of life improvements:
Reliable bed tilt compensation (no more thumbscrews) 2.4 and 5 GHz Wi-Fi A 1080p camera (mounted higher for a better view) Compatibility with 280+ Marketplace materials Compatibility with S5 project files (no reslicing needed) And a whole lot more
Curious to see the S7 in action?
We’re hosting a free tech demo on February 7.
It will be live and you can ask any questions to our CTO, Miguel Calvo.
Register here for the Webinar
Are you a fan of tree support, but dislike the removal process and the amount of filament it uses? Then we would like to invite you to try this special release of UltiMaker Cura. Brought to you by our special community contributor @thomasrahm
We generated a special version of Cura 5.2 called 5.3.0 Alpha + Xmas. The only changes we introduced compared to UltiMaker Cura 5.2.1 are those which are needed for the new supports. So keep in mind, this is not a sneak peek for Cura 5.3 (there are some really cool new features coming up) but a spotlight release highlighting this new version of tree supports.
Recommended Posts
LesHall 95
"Alright" you say, "what am I supposed to do, to generate the CAD design for these circuit boards?" "Surely you don't suggest I draw them with a 3D printing CAD software, trace by laborious trace?" Right! I did do that for the test circuit board in OpenSCAD, and boy was it a labor of love AKA a pain in the rear! "There must be a better way!", I thought. And there was.
First let me say that what is really and truly needed is a Gerber to STL or even Gerber to gCode translation utility. That's not so super difficult to make as Gerbers are basically mostly of the format go here in (X, Y) then go there in (X, Y) and so on, and both STL and gCode can be represented like that.
So certainly there may be in existence or will soon exist such software. I could not find it with a quick Google search anyway, so I developed a point and click workflow that is certainly a kludge but does get the job done for now. It goes like this.
You begin by designing your PCB in your favorite flavor of PCB CAD tool (I chose Eagle), then the first piece of jujitsu is you save the layers to file in PDF format. At least that's how I could do it with Eagle. After that my second piece of jujitsu is to double click on each PDF file and use Preview (I'm on a Mac) to export the PDF file as a PNG file. You may generate the PDF file another way and that's fine.
Then for my third piece of jujitsu I read those PNG files into OpenSCAD and saved them as STL files, so I have three STL files at that point. For the final piece of jujitsu I generate the each layer of conductor and difference() image of insulator for each layer, resulting in six separate STL files.
Now with those six STL files, we can print them all, insulator first and conductor second for best quality results (i think so anyway), or we can combine the first two conductor and the first two insulator layers, print the conductor layers first, , then finally print the third conductor layer and skip the third insulating layer altogether, resulting in only three print steps for a two layer board. I found that combo approach to be confusing mentally and lower quality in print form because of all the Zhop-hop-hopping around leaving angel hare (also known as boogers) all over the board, which we really cannot tolerate because it shorts the conductors.
Well there is one final tip in this crude and not-really-complete description, which is that we need sockets for our chips. The crudeness of the 0.4mm nozzle, a necessary minimum for the conductive filament to work (preferably 0.6mm), does not really support pin insertion and nor does it grab into the pins, so some type of friction fit socket is useful here.
I'm still working on that, for now I'm just adding large pin blocks that are spaced closely enough for a chip to be inserted either upside down or with the legs folded beneath it or trimmed with flush cutters and forced into the friction fit socket. More to follow on that technique and how to introduce it into the CAD files as a seventh layer (using custom footprints in the PCB CAD software).
So by now you've got the jist of it, you are a new jujitsu apprentice and you have at least an approximate understanding of that to do. Details and specifics to follow.
Les
Les go practice our CAD jujitsu!
Link to post
Share on other sites