What i was thinking is: the part that slips as soon as the filament can't extrude anymore is not the motor itself but the drive bolt that starts grinding at that point. So there must be some "potential" left there.
When you have a driving system that is capable of blocking a NEMA17 as soon as the filament blocks then you have reached the end of what is possible for your system. Then you could go to adjust the spring tension on the filament so the drive-bolts will start grinding again, when filament is blocked.
Perhaps i will rewrite that tomorrow. It's late already....
But thanks for the heads up on QU-BD. I didn't know them by now.
THX F
Recommended Posts
illuminarti 18
Nice project, for sure - Maybe I'm not understanding the design, but I'm not sure the two bolts part is particularly innovative, actually. For instance, the QU-BD extruders already pinch the filament between two contra-rotating rollers - the main difference may be these folks use two motors to do it, and so are able to get twice the torque - But maybe a single larger motor might be better, anyway.
The claimed throughput is impressive - a sustained 50mm³/second - the biggest challenge with that is cooling all that plastic fast enough, and also dealing with head-deceleration ooze at the corners; in the clip where they showed it printing a box, notice how the corners are piling up with plastic way above the print height? My RXL does that too, when printing quickly. The head slows down going into the corner, but the nozzle keeps oozing at the same rate.
Link to post
Share on other sites