Jump to content

avogra

Dormant
  • Posts

    303
  • Joined

  • Last visited

  • Days Won

    3

Everything posted by avogra

  1. avogra

    DIY-Dualextruder

    Ich glaube er meint den Druckkopf, nicht den Feeder. Da sind eigentlich nur die zwei Linearkugellager drin oder? Allerdings funktioniert das angeblich nur sehr eingeschränkt, einfach ein zweites Hotend einzubauen. Hauptprobleme sind wohl, dass du die Düsen nur schwer auf die exakt selbe Höhe bekommst und dann ständig die eine durch den frischen Druck der anderen fährt. Außerdem tropft die unbenutzte Düse während die andere druckt.
  2. If it is a UM2 (not +) you might also have a temperature sensor which reads too low a value so that the real temperature is much higher. I used a good multimeter with thermocouple to measure the temperature inside the nozzle and at 200°C display value, my multimeter showed 223°C. After switching to the Olsson Block and a new sensor (still old version which came with the printer) I read 208°C. I also checked the multimeter with boiling water and it showed 97°C.
  3. Steile Überhänge sind mit die größte Herausforderung für FDM-Drucker. Alles größer 45° ist problematisch. Die "Krempe" sieht nach 60° oder mehr aus, das ist machbar aber nicht einfach. Wichtigste Maßnahme ist genug Kühlung, damit das PLA so schnell wie möglich hart wird. Wenn du einen UM2 (ohne +) hast, empfiehlt sich ein besserer Fanshoud, der weniger Widerstand für die Lüfter bietet, z.B. der von Labern. Alternativ / zusätzlich montiere ich manchmal einen Lüfter vor den UM2, der einfach von vorn auf das Teil bläst. Dann ist noch interessant, wie groß die Figur ist. Bei kleinen Teilen lohnt es sich, mehrere Teile gleichzeitig zu drucken oder einfach eine zusätzliche Säule, so dass die Zeit pro Layer mindestens 5 sec ist. Eine ganz andere Möglichkeit ist es, die Figur in mehrere Teile zu zerlegen die dann ohne Überhänge gedruckt werden können und sie anschließend zu montieren.
  4. Zu deiner ersten Frage, beides hat vor und nachteile. Aus dem kopf fallen mir für one by one folgende vorteile ein: wenn was schief geht, dann nur bei einem teil, der rest ist schon fertig oder noch gar nicht angefangen weniger retractions, da nicht in jedem layer von teil zu teil gewechselt wird Vorteil von alles auf einmal: man kann den platz voll ausnutzen, der ist bei einzeln ja schon stark beschnitten besonders bei kleinen teilen haben die einzelnen layer mehr zeit zum abkühlen man kann teile höher als 55mm (?) drucken, die bei einzeln am gestänge anstoßen würden lange Zeiten zwischen den layern stören nicht, es sollte halt lang genug sein, dass der letzte layer fest ist bevor der nächste drauf kommt. ne große düse beschleunigt den druck auf jeden fall. durch eine 0,8mm düse passt einfach 4 mal so viel plastik pro zeit durch wie durch eine 0,4mm düse. mit den druckeinstellungen kann man schon einiges an der geschwindigkeit raus holen. ehrlich geaagt hab ich gleich von anfang an in den advanced modus umgeschaltet. ich weiß also gar nicht was man bei presets noch alles ändern kann. am meisten macht wahrscheinlich die schichthöhe aus. wieviel top und bottom thickness, infill und wandstärke machen, hängt jeweils stark vom bauteil ab. bei der geschwindigkeit kann es bei kleinen teilen leicht sein, dass der drucker in einigen layern die minimal layer time (standard 5sec) unterschreitet. dann bremst er soweit ab, dass er genau 5 sec braucht und der parameter geschwindigkeit hat fast keine auswirkung mehr. wenn du von 30mm/s auf 50mm/s nur 5% zeiteinsparung hast, dann wahrscheinlich deshalb. ich würde einfach viele einstellungen ausprobieren, dann bekommst du recht schnell ein gefühl dafür. zB kann bei teilen die keine schrägen Oberflächen haben eine layerheight von 0,15 mm viel besser aussehen als bei einem kugeligen teil 0,1mm.
  5. How did you model the fans in your simulation? Is it constant flow, constant pressure or did you somehow integrate the flow/pressure characteristics of the fans?
  6. I'm not sure, how accuracy has to be read when looking at manufacturing (or other) machines. My feeling says, it means how accurately the printhead and buildplate can be positioned, not how accurate the product will be. Usually the latter isn't under control of the machine's manufacturer as material, settings etc. play a major role. I think alone the surface roughness is more than 12.5 micron in most cases. But even then, I would be surprised, if Ultimaker could guarantee the mentioned accuracy for position of head and bed. Maybe they mixed it up with resolution?
  7. I had that question too everytime I used it, found it out by trial and then forgot it the next day Would be great if the text in the plugin was clear in that respect.
  8. Don't forget first layer height in advanced tab! In most cases it's different from layer height setting but still counts as only one layer in the layer view.
  9. Aber möchte man für den Coupler nicht eine möglichst niedrige Wärmeleitung? Der soll doch isolieren. Abgesehen davon ist vermutlich tatsächlich der neue Coupler von Ultimaker oder von 3DSolex eine gute Lösung.
  10. Grr, my post didn't make it into the thread :angry:In short: In general, im very satisfied with accuracy when printing pla. 2 problems stay to be accounted for: vertical holes being too small and first layer elephants foots. i usually compensate both in the model with +0.2mm diameter for the holes and a groove for the first layer. or i drill the holes afterwards / remove the elephants foot after the print. at the moment im trying other materials for mechanical parts like nylon and biofila platec. apart from more difficult bed adhesion, accuracy is fine too. im using an UM2, but i think you have the same results and problems with every quality fdm printer. After you mentioned it i'm surprised, that slicers dont have options to add some options for this compensations. i will propose that to be included in cura
  11. @tommyph1208, do you still want to try those prints? I think it's not too useful. My current design has already shown to be only that useful, no need to prove it I would rather bring the topic up again when It shows a real advantage over stock cooling or other fan shrouds.
  12. @Labern, you have quite a point. With my current setup even 45° on those smaller parts become mediocre, but of course that is a weak benchmark. Up to now I didn't bother to print a better fanshroud like yours, as I didn't have high Tg filament at home and wanted to try the crossflow approach anyway. Anyway I don't think it makes too much sense to look into those prints too close now, my implementation is still far from satisfying, don't need the prints to tell I would rather improve it and then come back with hopefully some better results
  13. I can share it tonight. Or you create it yourself It's just a cylinder with diameter 20mm, height 4mm and then an outward cone on top with 45° and 6mm height. the square one is 20x20mm with 4mm height and then a capped pyramid with also 45° and 6mm height. Can you also print with 0,1mm layers, 40mm/s, 20% infill and 205°C? Then the main difference should be cooling.
  14. oh sorry, my fault. what you see is the bottom side, the top surface of the prints is laying on the paper.
  15. @00D00B, if you have a look into the original thread by foehnsturm, they achieve super good results with only the crossflow fan. I think foehnsturm also added a small wedge to the printhead to deflect some air to backside. @tommyph1208, I did some pictures from the side, but I think the topdown versions show more detail. Have you looked at them in full resolution?
  16. that is really extreme, but also very cool Did it help?
  17. Oh, forgot to comment the pictures. These are 45° overhangs printed at 0,1mm layer height with 40mm/s and 205°C.
  18. Just thought that the discussion which came up there might be better continued here in the forum. @00D00B, got your pictures ;)Same picture with light coming from different directions. Not too impressive yet. I think, the fanshroud currently blocks a lot of air from the blowers. Hopefully removing it will help. @gareee, I also see the problem, that when the buildplate is lowered, the air won't flow straight under the nozzle but instead sloped down towards the edge of the buildplate. Also when the buildplate is very far down, the blowers won't suck the air from under the buildplate anymore. I thought about some airguides, that force the air to flow at the height of the nozzle and back under the buildplate. Simple sketch: No idea if this works out and if my understanding of flowing air is right at all :PAt least the current setup doesn't create a laminar airflow yet. From what I understand, that is the main point in foehnsturm's setup. Maybe I can get that too with a better nozzle geometry. If not, those air guides might still give a decent cooling. I will try on and keep you updated!
  19. I see no error with Cura but your model is really tiny. There is not enough time between the layers to cool down. For this model I would print a larger pillar next to it. With a 0.25mm nozzle you can expect much better results too.
  20. maybe Cura uses another origin than your printer. In the setup screen for your printer, there is a checkbox to set the origin to the center or one corner of the buildplate. you could just change it and see if it helps.
  21. from what everyone says, this should be no problem for the printer
  22. Here comes another entry: A cooling based on @foehnsturm 's laminar crossflow fan concept. [print=2133][/print]
  23. Version 1.0

    2,068 downloads

    This is a first try to bring the laminar crossflow cooling invented by @foehnsturm to the Ultimaker 2 without having to lay hands on your beloved shiny printer ;)It is attached with Tesa Powerstrips. Intention is, that air circulates through the fans and the long nozzle, across the printing layer, down left of the build-plate and back into the fans. The radial fans (Titan TTC-003) are quite cheap (<10€ each). I didn't want to waste filament and printing time on the large flat surfaces so instead I included some 0.8mm acrylic glas I had around. When I'm satisfied this hopefully gives all the UM2 owners a cheap and simple way of a crossflow cooling. It has still some shortcomings: airflow is a bit weak some air goes through the top and the front instead of around the buildplate airflow widens and decreases from right to left Right now it improves overhangs when combined with the stock fans but is too weak as the only cooling. Unfortunately the nozzle has to be that thin to prevent collision with the fan shroud. Ideas for improvement are a recessed cover for the front so the air is forced around the buildplate an airguide on the left side, so that also with the buildplate lowered, the air is sucked in at the height of the current printing layer, maybe even equipped with another set of fans a wider airnozzle to increase airflow and removing the stock fans and fan shroud
  24. What a pity! Apart from that warping this is an absolute nobrainer. Thank you for confirmation.
×
×
  • Create New...